In their 60-year history, dapsone and the sulfones have been used as both antibacterial and anti-inflammatory agents. Dapsone has been used successfully to treat a range of dermatologic disorders, most successfully those characterized by abnormal neutrophil and eosinophil accumulation. This article reviews and updates the chemistry, pharmacokinetics, clinical application, mechanism of action, adverse effects, and drug interactions of dapsone and the sulfones in dermatology. (J Am Acad Dermatol 2001;45:420-34.)
as acetylation by N-acetyltransferase yields the non-
toxic metabolites monoacetyl dapsone and diacetyl
dapsone.24

CYP3A was previously thought to be the major
cytochrome isoform that hydroxylates dapsone, and
the urinary recovery ratio of dapsone (amount of
dapsone hydroxylamine excreted/amount of dap-
sone and its hydroxylamine excreted) was suggested
as a putative in vivo CYP3A probe.28 However, recent
evidence indicates that more than one cytochrome
P-450 enzyme is involved in dapsone hydroxylamine
formation using human liver microsomes.29,30

Studies with low molecular weight inhibitors illus-
trate the importance of CYP2E,31 and CYP2C32 in
dapsone hydroxylation. Pretreatment with ketocona-
zole, an inhibitor of CYP3A, had no effect on dap-
sone hydroxylation in human subjects, indicating
that CYP3A may not be significantly involved in dap-
sone N-hydroxylation in vivo.33

In a white population, dapsone N-hydroxylation
exhibited a unimodal distribution with marked (ten-
fold) intersubject variability, and aging was associ-
ated with a reduced rate of hydroxylation.34 Differential
sensitivity of dapsone N-hydroxylation to selective
CYP inhibitors indicated that the contribution of indi-

PHARMACOKINETICS

Absorption

Orally ingested dapsone is absorbed readily from
the gastrointestinal tract with bioavailability of more
than 86%.19 Absorption is reduced in severe leprosy.20
The disubstituted sulfones, such as sulfoxone, are
poorly absorbed after oral administration, and large
amounts are excreted in the feces.21 In healthy volun-
tees, after 100 mg of oral dapsone, peak serum dap-
sone concentrations between 1.10 and 2.33 mg/L
were reached within 0.5 to 4 hours.22 The elimination
half-life ranged from 12 to 30 hours.22 Twenty-four
hours after oral ingestion of 100 mg of dapsone, plasma
concentrations ranged from 0.4 to 1.2 mg/L.23 The
therapeutic range of serum concentration is 0.5 to 5
mg/L for leprosy.24 Serum levels stabilize after 8 to 10
days of therapy.24 Dapsone pharmacokinetics in chil-
dren are similar to those of adults, and dosing of chil-
dren with 2 mg/kg daily or 4 mg/kg weekly results in
peak concentrations equivalent to those reached in
adults receiving 100 mg tablets daily.25

Distribution

Dapsone is approximately 70% protein-bound, and
its monoacetylated metabolite is almost entirely
protein-bound. Dapsone is distributed to all body
organs including skin, liver, kidneys, and erythro-
cytes. Dapsone crosses the blood-brain barrier and
the placenta and is found in breast milk.20,21,26,27

Metabolism

After absorption from the gastrointestinal tract,
dapsone is transported through the portal circula-
tion to the liver, where it is metabolized via acetyla-
tion or N-hydroxylation (Fig 2). N-hydroxylation
yields the hydroxylamine, a potentially toxic metabo-
lite produced by cytochrome P-450 enzymes, where-

as acetylation by N-acetyltransferase yields the non-
toxic metabolites monoacetyl dapsone and diacetyl
dapsone.24

CYP3A was previously thought to be the major
cytochrome isoform that hydroxylates dapsone, and
the urinary recovery ratio of dapsone (amount of
dapsone hydroxylamine excreted/amount of dap-
sone and its hydroxylamine excreted) was suggested
as a putative in vivo CYP3A probe.28 However, recent
evidence indicates that more than one cytochrome
P-450 enzyme is involved in dapsone hydroxylamine
formation using human liver microsomes.29,30

Studies with low molecular weight inhibitors illus-
trate the importance of CYP2E,31 and CYP2C32 in
dapsone hydroxylation. Pretreatment with ketocona-
zole, an inhibitor of CYP3A, had no effect on dap-
sone hydroxylation in human subjects, indicating
that CYP3A may not be significantly involved in dap-
sone N-hydroxylation in vivo.33

In a white population, dapsone N-hydroxylation
exhibited a unimodal distribution with marked (ten-
fold) intersubject variability, and aging was associ-
ated with a reduced rate of hydroxylation.34 Differential
sensitivity of dapsone N-hydroxylation to selective
CYP inhibitors indicated that the contribution of indi-

Fig 1. Structures of dapsone and sulfoxone sodium.
Dapsone is effective in dermatoses with abnormal neutrophil accumulation, through many potential mechanisms. Dapsone interferes with neutrophil chemotactic migration and B2 integrin (CD11b/CD18)-mediated adherence of human neutrophils in vitro. Dapsone interferes with the activation or function of the G-protein (Gi type) that initiates the signal transduction cascade common to chemotactic stimuli. This inhibition suppresses neutrophil recruitment and local production of toxic respiratory and secretory products.

Oxidants are important not only in the killing of bacteria, but they also participate in damaging bystander tissues in many disease processes. Hypochlorous acid, the most important oxidant, is produced by the heme-containing enzyme myeloperoxidase (MPO) in neutrophils and by eosinophil peroxidase. In vitro studies have demonstrated that dapsone inhibits neutrophil MPO-mediated iodination and cytotoxicity at concentrations comparable to serum levels obtained by therapeutic doses. Dapsone appears to bind to MPO, irreversibly converting it to an inactive compound (compound II), with chemical modification of the enzymatic active site. Eosinophil peroxidase was found to be even more sensitive to inhibition by dapsone than MPO. Thus dapsone appears to protect cells from neutrophil- and eosinophil-mediated injury by directly inhibiting the generation of toxic, oxygen-derived radicals.

Systemic dapsone reduces leukotriene B4 (LTB4)-stimulated inflammation in mice, partly by inhibiting the binding of LTB4 to specific receptors on neutrophils and by inhibiting neutrophil chemotactic response to LTB4. Dapsone inhibits the generation of 5-lipoxygenase products in human polymorphonuclear leukocytes and rat mast cells in vitro. Dapsone also inhibits lysosomal enzymes. Therefore, by multiple mechanisms, dapsone reduces the release of prostaglandins and leukotrienes and blocks their inflammatory effects.

Little is known about the mechanism of dapsone efficacy in antibody-mediated diseases such as linear immunoglobulin A bullous dermatosis (IgA dermatosis) and bullous pemphigoid. Thuong-Nguyen et al. evaluated the effect of dapsone on adherence of normal neutrophils to IgA and IgG from sera of patients with IgA dermatosis and bullous pemphigoid. Dapsone inhibits the adherence of neutrophils to basement membrane zone antibody in a dose-dependent manner. Serum from a patient taking dapsone inhibited neutrophil adherence, whereas the serum of the same patient when not receiving dapsone had no inhibitory effect. This experiment suggests a plausible mechanism for the clinical efficacy of dapsone, although more in vivo studies are needed.
In summary, dapsone appears to predominantly affect the effector mechanisms, while having no influence on the initial pathogenic processes. This explains why dapsone is effective in treating a variety of dermatologic diseases that have different causes.

CLINICAL INDICATIONS

Dapsone is both an antibiotic and an anti-inflammatory agent. It is bacteriostatic against Mycobacterium leprae and is an essential component of leprosy treatment. It has also been used successfully to treat actinomycetoma, in prophylaxis and treatment of Pneumocystis carinii pneumonia (PCP), and for malaria.

As an anti-inflammatory agent, dapsone has been used to treat many skin diseases characterized by the abnormal infiltration of neutrophils or eosinophils, such as erythema elevatum diutinum, dermatitis herpetiformis (DH), Sneddon-Wilkinson disease (subcorneal pustular dermatosis, SWD), linear IgA dermatosis, pustular psoriasis, pyoderma gangrenosum (PG), and Sweet’s syndrome (Tables I and II). Among these, DH has the highest response rate (95%-97%). Significant but lower response rates have been observed in erythema elevatum diutinum, linear IgA dermatosis, and SWD (see Tables I and II). Relapsing polychondritis has been successfully treated with dapsone and systemic corticosteroids except for a few reported failures. Most clinical indications of dapsone are based on anecdotal case reports, and there is a need for clinical trials to define its efficacy. Dapsone as an antineutrophilic agent has been effective in the treatment of brown recluse spider bites.

Table I. Clinical indications of dapsone in dermatology (part 1)

<table>
<thead>
<tr>
<th>Skin diseases</th>
<th>Regimen</th>
<th>Other therapy and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acne fulminans</td>
<td>100 mg qd</td>
<td>Case reports only</td>
</tr>
<tr>
<td>Acnomyctoma</td>
<td>1.5-5 mg/kg qd for 1-2 y. Most effective regimen is streptomycin with either dapsone or TMP-SMZ.</td>
<td></td>
</tr>
<tr>
<td>Brown recluse spider bites</td>
<td>100 mg qd</td>
<td>Dapsone is the drug of choice. Brief courses of prednisone and immunosuppressive agents such as azathioprine or cyclophosphamide in a daily dosage of 2-3 mg/kg are recommended to control individual episodes of severe recurrence.</td>
</tr>
<tr>
<td>Cicatricial pemphigoid</td>
<td>150 mg qd required for acute episode control and 25-150 mg qd for maintenance.</td>
<td>Dapsone has a 95%-97% response rate for DH and remains the best tolerated therapy.</td>
</tr>
<tr>
<td>DH</td>
<td>25-100 mg qd alone or with gluten-free diet</td>
<td>Spontaneous clearing is the rule but may take a long time. Resistant to many other therapeutic modalities.</td>
</tr>
<tr>
<td>Eosinophilic cellulitis</td>
<td>100 mg qd for treatment, 50 mg qd with antihistamine and corticosteroid for maintenance.</td>
<td>Other efficacious regimens include corticosteroid, minocycline, and anti-histamine.</td>
</tr>
<tr>
<td>Erythema elevatum diutinum</td>
<td>From 25-150 mg qd</td>
<td>Case reports only</td>
</tr>
<tr>
<td>Granuloma annulare</td>
<td>100 mg qd for adults</td>
<td>No satisfactory treatment exists. Therapies investigated include electrodesiccation, surgical excision, intralesional corticosteroid injections, cryotherapy, dermabrasion, radiation therapy, gold injections, systemic corticosteroids, and antimalarial drugs.</td>
</tr>
<tr>
<td>Granuloma faciale</td>
<td>200 mg qd for 6 wk-4 mo, 25-100 mg for maintenance</td>
<td>No satisfactory treatment exists. Therapies investigated include electrodesiccation, surgical excision, intralesional corticosteroid injections, cryotherapy, dermabrasion, radiation therapy, gold injections, systemic corticosteroids, and antimalarial drugs.</td>
</tr>
</tbody>
</table>

Leprosy (Hansen's disease)

Despite progress in the management of leprosy over the past decades, the incidence of the disease has changed very little; 685,000 new cases were reg-
istered in 1997. With international travel, leprosy may be found anywhere.

Treatment of leprosy is generally guided by the recommendations of the World Health Organization (WHO). For paucibacillary patients, they recommend 600 mg of rifampicin monthly, supervised, and 100 mg of dapsone daily, unsupervised, for 6 months before therapy can be discontinued.81 For single-lesion paucibacillary leprosy, the 7th WHO Expert Committee on Leprosy recommends a single dose of 600 mg rifampicin, 400 mg ofloxacin, and 100 mg minocycline, based on a multicenter trial.82,83 For multibacillary cases, WHO recommends 600 mg of rifampicin and 300 mg of clofazimine monthly, supervised, and 100 mg of dapsone and 50 mg of clofazimine daily, unsupervised for 12 months.83,84

Pneumocystis carinii pneumonia

The treatment of choice for PCP remains trimethoprim-sulfamethoxazole (TMP-SMX).67,68 Those with mild to moderate disease may receive dapsone-trimethoprim or clindamycin-primaquine if TMP-SMX is contraindicated.67,68 However, both dapsone-trimethoprim and clindamycin-primaquine regimens are contraindicated in glucose 6-phosphate dehydrogenase (G6PD) deficiency.57,68 For this purpose, atovaquone should be used in patients who are deficient in G6PD and unable to take either TMP/SMX or pentamidine.85 Dapsone is an alternative drug for PCP prophylaxis in both adults and children intolerant to TMP-SMX and pentamidine.69,86-92 However, dapsone is probably not as effective as TMP-SMX in preventing PCP. Retrospective cohort studies showed that dapsone prophylaxis is associated with significantly higher rates of PCP than TMP-SMZ after allogeneic marrow transplantation.93-95 Therefore dapsone should be used as only a second or third choice for PCP prophylaxis.

Dermatitis herpetiformis

DH is a lifelong, blistering skin disease with pathognomonic IgA deposits in the papillary dermis.96,97 Both the histopathologic and skin abnormalities in DH respond to gluten-free diet.98,99 In 1950 the first report of successful use of dapsone in the treatment of DH was published.10 Since then, clinical studies and many case reports have established dapsone as the best tolerated pharmacologic therapy for DH in both adults and children.11-16 If patients constantly adhere to the gluten-free diet, the dosage of dapsone required to suppress the skin

Table II. Clinical indications of dapsone in dermatology (part 2)

<table>
<thead>
<tr>
<th>Skin diseases</th>
<th>Regimen</th>
<th>Other therapy and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgA pemphigus</td>
<td>50 mg qd<sup>132</sup></td>
<td>Dapsone is the first therapeutic choice. Eretinate, and systemic steroids are second-line therapies<sup>132</sup></td>
</tr>
<tr>
<td>Lichen planus</td>
<td>50-150 mg qd; for children 1-2 mg/kg qd<sup>226</sup></td>
<td>Effective for erosive lichen planus<sup>227,228</sup></td>
</tr>
<tr>
<td>Linear IgA dermatosis</td>
<td>50-450 mg qd<sup>226</sup>; for children, 1-2 mg/kg qd<sup>230,231</sup></td>
<td>No response to gluten-free diet.<sup>232,233</sup> Other treatments include sulfamethoxypyridazine<sup>229</sup> and colchicine.<sup>234</sup></td>
</tr>
<tr>
<td>Pemphigus vulgaris</td>
<td>100 mg qd<sup>120</sup></td>
<td>Dapsone is an adjuvant therapy to corticosteroid.<sup>121</sup></td>
</tr>
<tr>
<td>PP</td>
<td>1 mg/kg qd combined with tripterlide and erythromycin<sup>235</sup></td>
<td>Short-contact anthralin therapy and topical PUVA for localized PP. Clofazimine<sup>105</sup> methotrexate, hydroxyurea, etretinate, cyclosporin, and systemic corticosteroids may be used for generalized PP<sup>236</sup></td>
</tr>
<tr>
<td>Pyoderma gangrenosum</td>
<td>100-300 mg qd alone or combined with corticosteroid<sup>109-111</sup></td>
<td>No single regimen is effective for all patients.</td>
</tr>
<tr>
<td>Relapsing polychondritis</td>
<td>100-200 mg qd for 3-4 mo, then taper to maintenance dose<sup>72,73</sup></td>
<td>Dapsone and/or systemic corticosteroids are the most effective therapies.<sup>76,237</sup></td>
</tr>
<tr>
<td>Sneddon-Wilkinson disease</td>
<td>50-150 mg qd<sup>17,238</sup></td>
<td>Systemic steroid is first-line therapy<sup>240,241</sup>; dapsone was recommended as first-line therapy for recurrent neutrophilic dermatosis of the dorsal hands<sup>242</sup></td>
</tr>
<tr>
<td>Sweet’s syndrome</td>
<td>100-200 mg qd<sup>239</sup></td>
<td></td>
</tr>
</tbody>
</table>

PP: Pustular psoriasis.
Pyoderma gangrenosum
PG, an ulcerative skin disease of unknown origin, is associated with many systemic diseases including inflammatory bowel disease and rheumatoid arthritis (RA). PG is challenging to treat, and no single regimen is effective for all patients. Effective pharmacotherapy may include prednisone (intralesional and oral), sulfonamides, cyclosporine, clofazimine, thalidomide, methotrexate, and intravenous human immunoglobulin. Dapsone alone or in combination with prednisone has been used successfully to treat PG.

Brown recluse spider
The venom of the brown recluse spider may cause severe necrosis and hemolysis. Local envenomation begins with pain and itching, progressing to vesiculation with violaceous necrosis, extensive surrounding erythema, and ulceration. These ulcers may require complex surgical reconstruction with flaps or grafts. In the worst scenario, envenomation has caused renal failure, seizures, and even death. Dapsone, 100 mg/day, has emerged as a promising pharmacotherapeutic agent in both animal studies and human clinical trials for systemic envenomation. In two retrospective studies of 31 patients each, pretreatment with dapsone not only reduced surgical complications but also improved the outcome of patients.

Pemphigus vulgaris
In 1976, Rosenberg, Sanders, and Nelson reviewed 107 consecutive cases of pemphigus, finding dapsone a useful adjuvant to systemic corticosteroids. Its usefulness as a steroid-sparing agent has been supported by other investigators. Dapsone is occasionally effective if used alone in uncomplicated cases of pemphigus.

IgA pemphigus
IgA pemphigus covers a broad spectrum of diseases characterized by vesiculobullous or vesiculopustular lesions with intercellular IgA deposition, first described in 1979. Other names that have been used for IgA pemphigus include intraepidermal neutrophilic IgA dermatosis, IgA pemphigus foliacus, IgA herpetiform pemphigus, intraepidermal IgA pustulosis, and intercellular IgA vesiculopustular dermatosis. There are two subtypes of IgA pemphigus, one is the subcorneal pustular dermatosis type resembling SWD, and the other is the intraepidermal neutrophilic IgA der-
enzyme or with a hemoglobinopathy are more susceptible to methemoglobinemia.141

Hemolysis

Hemolysis with Heinz-body formation and frank anemia from dapsone therapy have long been recognized. The average hemoglobin in leprosy patients treated with daily dapsone falls significantly by almost 2 g/dL before reaching a nadir, whereas in 16\% of patients the hemoglobin falls at least 3 g/dL.142 Increasing age and daily dose have been associated with an increased magnitude of dapsone-related hemolysis.142 In vitro and in vivo studies have demonstrated a direct involvement of hydroxylamines in hemolysis.143-145 Exposure of rat red blood cells to hydroxylamine metabolites in vitro with subsequent readministration to isologous rats results in premature splenic sequestration of the damaged cells.143,145 The exact mechanism of hemolysis is not known, and it is hypothesized that oxygen free radicals are involved.146 To minimize hemolysis, daily dapsone dosage should not exceed 1.5 mg/kg body weight or 100 mg in normal healthy persons, and 50 mg in healthy G6PD-deficient persons.147

G6PD deficiency and dapsone side effects

G6PD-deficient patients are less susceptible to methemoglobinemia and more susceptible to hemolysis. G6PD deficiency leads to the impairment of the hexose monophosphate shunt, and thus to a decrease in NADPH formation. Consequently, the regeneration of hydroxylamine metabolites of dapsone and their effect on methemoglobin formation are reduced. Persons deficient in erythrocytic G6PD show about a 2-fold increase in sensitivity toward dapsone-induced hemolytic anemia. Treatment of red blood cells with epiandrosterone, a potent inhibitor of rat red blood cell G6PD and hexose monophosphate shunt, resulted in about a 2-fold increase in sensitivity of the rat cells to N-hydroxydapsone hemolytic activity, and a modest but significant increase in depletion of red blood cell glutathione.143,144 However, treatment of leprosy for G6PD-deficient patients on 600 mg dapsone per week for a long period of time did not lead to significant hemolysis.148

Agranulocytosis

The mechanism of dapsone-induced agranulocytosis is unclear but may involve erythrocytes.149 Erythrocytes exposed to hydroxylamine and repeatedly washed may still release this metabolite in sufficient concentration to kill mononuclear leukocytes in vitro.149 Thus erythrocytes may be a conduit for hydroxylamine to reach the bone marrow, where it can covalently bind to granulocyte precursors, triggering an immune response in certain persons and leading to the potentially fatal agranulocytosis.

Other rare side effects with unknown mechanism

The spectrum of dapsone side effects seems to be as broad as its clinical indications; fortunately, however, most are rare. One such side effect of dapsone is the "dapsone syndrome," a hypersensitivity reaction presenting with the triad of fever, rash, and internal organ involvement. Cutaneous lesions include erythematous papules, plaques, pustules, and eczematous lesions.150,151 Only a few cases have been reported in patients taking doses of less than 100 mg/d, and the incidence was estimated to be less than 0.5\%.152,153 Other manifestations of this syndrome include pruritus, lymphadenopathy, jaundice with hepatic dysfunction, mononucleosis, eosinophilia, photosensitivity, hepatomegaly, and splenomegaly.135,150,152-154 The interval between drug initiation and hypersensitivity reaction varies from case to case. Some authors suggest that the reaction happens within 1 to 6 weeks,153,156 whereas others suggest anytime after 4 weeks.151 On average, this syndrome occurs 27 days after the initial ingestion of dapsone.150 Elevated erythrocyte sedimentation rate and liver enzyme levels were variable findings in the "dapsone syndrome."150

Other medications that may cause similar hypersensitivity syndromes include antiepileptics,157 sulfonamide antibiotics such as sulfamethoxazole,158 allopurinol,159,160 nonsteroidal anti-inflammatory drugs,161 minocycline,162,163 terbinafine,164 and azathioprine.165,166 In some patients, hypothyroidism may occur 3 months or more after onset of the hypersensitivity reaction.167

In isolation or as part of the dapsone syndrome, other side effects associated with dapsone include neurotoxicity (minor neurologic complaints to peripheral neuropathy168-170 and psychosis171-173), hepatotoxicity (toxic hepatitis),174,175 renal toxicity (nephrotic syndrome and renal papillary necrosis),176,177 and minor gastrointestinal complaints.178 Neurotoxic reaction is considered idiosyncratic and dose-independent,168,171 even though it was never observed in many patients on a dosage of 25 mg/d.179 A case of Stevens-Johnson syndrome was reported to be likely induced by administration of dapsone.180

Monitoring and prevention of dapsone side effects

The clinician should avoid concomitant therapy with drugs associated with hemolysis or blood
dyscrasias, such as sulfonamides, isoniazid, aspirin, ibuprofen, and primaquine, especially in G6PD-deficient patients. As discussed previously, whether acetylation polymorphism affects the risk of experiencing hematologic side effects is still disputed. Guidelines for monitoring the side effects of dapsone are presented in Tables III and IV. Unfortunately, there is no reliable way to predict the risk of dapsone hypersensitivity. Successful treatment of the dapsone syndrome with 30 to 60 mg/d of oral prednisolone has been reported.

HOW TO INCREASE TOLERANCE TO DAPSONE

Use of a metabolic inhibitor such as cimetidine to reduce hepatic oxidation of dapsone to hydroxylamine has successfully decreased its adverse effects. Methemoglobin formation in the presence of cimetidine was maintained at 50% below control levels for almost 3 months, and the incidence of reported side effects such as headache and lethargy were significantly reduced. Long-term concurrent cimetidine administration increased plasma dapsone levels without increased hemolysis and reduced methemoglobinemia for more than 2 months. The concomitant use of cimetidine is recommended to increase patient compliance, especially in patients receiving dapsone dosages in excess of 200 mg/d. Because of the previously mentioned interindividual variation of hydroxylation enzymes and the involvement of more than one cytochrome isoform in dapsone hydroxylation, selective cytochrome inhibitors cannot produce complete inhibition of hydroxylation and are unlikely to offer any clinical advantage over cimetidine in decreasing dapsone toxicity in vivo.

Because oxygen radicals are thought to be involved in dapsone-induced hemolytic anemia, antioxidants such as vitamins C and E may be protective against this adverse effect. In 1984, Kelly et al reported that in patients receiving dapsone at 100 mg/d, vitamin E therapy at 800 mg/d up to 3 months does not substantially ameliorate the hemolytic effect of this drug. However, a more recent clinical study found that oral administration of 800 U of vitamin E daily for 4 weeks conferred partial protective effect against dapsone-induced hemolysis in patients with DH. Vitamin C was not found to be effective in this study. Both these studies have limitations because they were not randomized, placebo-controlled, and blinded clinical trials. More studies are warranted to clarify the usefulness of vitamin E in reducing side effects of dapsone.

USE DURING PREGNANCY AND LACTATION

Pregnancy may be a trigger of leprosy and other dermatologic diseases because of the changes in cell-mediated and humoral immunity during gestation. First appearance of leprosy, reactivation of the disease, and relapse in “cured” patients are likely to occur particularly in the third trimester of pregnancy. Because up to 20% of children born to mothers with leprosy may experience leprosy by puberty, pregnant women with leprosy require treatment.

Table IV. Major adverse effects of dapsone

<table>
<thead>
<tr>
<th>Incidence rate and relation to dosage</th>
<th>Follow-up monitoring guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemolysis</td>
<td>Especially in G6PD-deficient patients; CBC count with differential WBC count and reticulocyte count every 2 wk for first 3 mo, then every 3 mo</td>
</tr>
<tr>
<td>Methemoglobinemia</td>
<td>Monitor methemoglobin levels in patients with cardiopulmonary disease, hemoglobinopathy, or methemoglobin reductase deficiency</td>
</tr>
<tr>
<td>Agranulocytosis</td>
<td>Monitor CBC count 4-10 wk after initiation of therapy; stop therapy when WBC count <4000/mm³</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>Periodic neurologic screening examination by dermatologist; any suspected abnormality needs referral for full neurologic examination and electromyogram with nerve conduction studies</td>
</tr>
<tr>
<td>Psychosis</td>
<td>Manifested by insomnia, irritation, excitability, and even violence; reversible on stopping dapsone</td>
</tr>
</tbody>
</table>

CBC count, Complete blood cell count; Hb, hemoglobin; WBC count, white blood cell count.
Treatment with dapsone for various diseases during pregnancy is generally considered to be safe for both mother and fetus. There have been a few case reports of neonatal complications after maternal dapsone therapy, including neonatal hemolytic disease, neonatal hyperbilirubinemia, and neonatal methemoglobinemia. Dapsone can cross the placenta and is found in limited amounts in breast milk.

DRUG INTERACTIONS

Drugs that affect the pharmacokinetics and efficacy of dapsone are listed in Table V. Concurrent administration of clofazimine in combination therapy of leprosy does not appear to affect the excretion of dapsone.

Concurrent administration of other substrates of the same enzymes that metabolize dapsone may influence the efficacy and toxicity of dapsone. For instance, dapsone, isoniazid, and sulfamethazine are probably acetylated by the same N-acetyltransferase, and when either is administered with dapsone to healthy human subjects, the acetylation rate of dapsone was decreased. This drug interaction could potentially increase the toxicity of dapsone. However, no clinical relevance of this interaction has been reported.

Other drugs may also influence dapsone metabolism through their influences on cytochrome P-450. Inducers of cytochrome P-450 such as glucocorticoids and anticonvulsants may potentially increase N-hydroxylation of dapsone to hydroxylamine. Coadministration of other drugs such as macrolide antibiotics andazole antifungals that are inhibitors of cytochrome P-450 potentially decreases the rate of dapsone hydroxylation and its toxicity, if dapsone has lower affinity for the enzyme. Within the class of macrolides, erythromycin has the greatest inhibition of CYP3A followed by clarithromycin, whereas azithromycin has no effect at all. Among azole antifungal medications, ketoconazole is a more effective inhibitor of CYP3A than itraconazole, which is more effective than fluconazole. One may infer that fluconazole will have the least interaction of any azole antifungal, and azithromycin will be the safest macrolide for concomitant use with dapsone.

Because more than one cytochrome P-450 isoform is involved in the hydroxylation of dapsone, other drugs can interact with dapsone through different isoforms, including CYP3A, CYP2C, and CYP2E (see “Metabolism”). Because the relative contributions of these isoforms probably have significant interindividual variability, the clinical significance of the selective inhibitors of cytochrome isoforms on dapsone is undefined, and more clinical data are needed to clarify this issue.

Despite major advances in pharmacotherapy of dermatologic disorders in the past several decades, dapsone retains its niche in the dermatologist’s therapeutic armamentarium.

REFERENCES

94. Vasconcelles MJ, Bernardo MW, King C, Weller EA, Antin JH. Aerosolized pentamidine as pneumocystis prophylaxis after bone marrow transplantation is inferior to other regimens and is associated with decreased survival and an increased risk of other infections. Biol Blood Marrow Transplant 2000;6:35-43.

139. Fowler PD, Shadforth MF, Crook PR, Lawton A. Report on chloro-

AVAILABILITY OF JOURNAL BACK ISSUES
As a service to our subscribers, copies of back issues of the Journal of the American Academy of Dermatology for the preceding 5 years are maintained and are available for purchase from Mosby until inventory is depleted. Please write to Mosby, Subscription Customer Service, 6277 Sea Harbor Dr, Orlando, FL 32887, or call 800-654-2452 or 407-345-4000 for information on availability of particular issues and prices. If unavailable from the publisher, photocopies of complete issues may be purchased from Bell & Howell Information and Learning, 300 N Zeeb Rd, Ann Arbor, MI 48106, (313)761-4700.